- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dang, Weiwei (2)
-
Guo, Hao-Bo (2)
-
Qin, Hong (2)
-
Sun, Yu (2)
-
Yu, Ruofan (2)
-
Clark, Justin (1)
-
Ghafari, Mehran (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
Schwenker, Friedhelm (1)
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ghafari, Mehran; Clark, Justin; Guo, Hao-Bo; Yu, Ruofan; Sun, Yu; Dang, Weiwei; Qin, Hong (, PLOS ONE)Schwenker, Friedhelm (Ed.)Microfluidic-based assays have become effective high-throughput approaches to examining replicative aging of budding yeast cells. Deep learning may offer an efficient way to analyze a large number of images collected from microfluidic experiments. Here, we compare three deep learning architectures to classify microfluidic time-lapse images of dividing yeast cells into categories that represent different stages in the yeast replicative aging process. We found that convolutional neural networks outperformed capsule networks in terms of accuracy, precision, and recall. The capsule networks had the most robust performance in detecting one specific category of cell images. An ensemble of three best-fitted single-architecture models achieves the highest overall accuracy, precision, and recall due to complementary performances. In addition, extending classification classes and data augmentation of the training dataset can improve the predictions of the biological categories in our study. This work lays a useful framework for sophisticated deep-learning processing of microfluidic-based assays of yeast replicative aging.more » « less
An official website of the United States government
